Energy storage: high performance material engineering

— Teranishi Group —
Faculty of Engineering

Research activities
1) Polarization assisted ultrahigh rate lithium ion batteries

1) Lithium ion conductor-dielectrics nano-composite capacitor exhibiting enormous capacitance

1) Tunable ferroelectrics with controlled ferroelectric domain configuration

1) Broadband dielectric spectroscopy on oxide materials
Tunable ferroelectric oxides

Ferroelectric oxides with high nonlinearity has been widely used for microwave tunable devices, such as tunable capacitors, phase shifters and tunable antennae, attributing to the ferroelectric domains...

Objective: Enhance the tunability T for ferroelectric oxides by controlling domain structure

Further we need to know the defect contribution such as oxygen and cation vacancies to the tunable property besides the ferroelectric domain size.

Broadband spectroscopy for oxides

Broadband spectroscopy on dielectric and conductive oxides yields to understanding of the origin of polarization and conduction mechanism.

Objective: Determine the broadband dielectric / conductivity spectra from low to THz region for various oxides to analysis their polarization / conduction mechanisms.

Ferroelectrics: BaTiO\textsubscript{3}

Oxygen ion conductors: YSZ

We’ll determine broadband spectra for given dielectric and ion conductive oxides if asked.

Okayama University researcher: Pr. Teranishi
Tyndall researcher: Dr. Liam Floyd <liam.floyd@tyndall.ie>
Coordinator: Dr. Nicolas Cordero <Nicolas.Cordero@tyndall.ie>

"Nanoscale TLs for ferroelectric characterization"
*TL=transmission line
The dielectric measurement technique for ferroelectric ceramics up to 100GHz using down to 100 nm sized transmission line electrodes will be established.
The advanced metal deposition technique using EB-lithography as well as a series of facilities for microwave dielectric evaluation at Tyndall will be accessed

To understand the microscopic polarization behaviour in ferroelectric compounds

---- Performed in April 2017 (see the ASCENT news)

Specific gain expected at ASCENT (Tyndall) platforms

Up to 100GHz at Tyndall – 9GHz only at Takashi’s lab.
Since the dipole polarization in ferroelectrics fully relaxes up to tens of GHz at the highest, the measuring the permittivity up to 100 GHz will deliver the accurate quantification to the dipole contribution as well as the determination of the relaxation frequency of dipoles.
The analysis will thus allow us to understand the microscopic polarization behaviour in ferroelectric compounds
Teranishi Gr. members (y-2017)
1 PhD student (L-I-Batteries)

6 MD students (LIB, Ferroelectrics)

4 BD students (LIB, Capacitors, Ferroelectrics)

*LIB: Lithium ion batteries, LIC: Lithium ion capacitor

Recent papers

1) T. Teranishi, S. Kajiyama, H. Hayashi, A. Kishimoto,
Polarization behavior of sol-gel-derived relaxor Ba(Zr, Ti)O3 films",

2) T. Teranishi, R. Kanemoto, H. Hayashi, A. Kishimoto,
Effect of the (Ba + Sr)/Ti ratio on the microwave-tunable properties of Ba0.6Sr0.4TiO3 ceramics",

3) T. Teranishi, Y. Ishii, H. Hayashi, A. Kishimoto,
“Lithium ion conductivity of oriented Li0.33La0.56TiO3 solid electrolyte films prepared by a sol–gel process",

4) T. Teranishi, Y. Yoshikawa, R. Miyahara, H. Hayashi, A. Kishimoto, M. Katayama, Y. Inada,
“In situ time-resolved dispersive X-ray absorption fine structure analysis of BaTiO3–LiCoO2 composites for lithium ion batteries",

